CHROM. 19 273

Note

Esterification of amino acids with thionyl chloride acidified butanols for their gas chromatographic analysis

I. MOLNÁR-PERL*, M. PINTÉR-SZAKÁCS and V. FÁBIÁN-VONSIK

Institute of Inorganic and Analytical Chemistry, L. Eötvös University, Muzeum krt. 4/B, 1088 Budapest (Hungary)

(First received September 22nd, 1986; revised manuscript received November 17th, 1986)

The advantages in the preparation of amino acid methyl esters of using thionyl chloride-methanol, instead of HCl-methanol (methanol saturated by different amounts of hydrogen chloride gas), have been detailed¹⁻⁹. Recently the efficiency of *n*-propyl esterification of amino acids was reported¹⁰. To our knowledge, there are no literature data on the utilization of thionyl chloride-butanols for the esterification of amino acids.

Our work was intended (i) to provide a suitable derivatization procedure for the rapid butyl esterification of amino acids with a good reproducibility in order to clarify the optimum conditions using thionyl chloride-butanols as esterification mixtures and (ii) to compare the efficiency of the suggested method to the classical procedure¹¹.

MATERIALS AND METHODS

Reagents

All reagents and standard amino acids were of analytical purity, obtained from Reanal (Budapest, Hungary).

Apparatus

A Chromatron G.C.H.F. 18.3 gas chromatograph (VEB Chromatron, Berlin, G.D.R.) equipped with a flame ionization detector and a 3 m \times 3 mm I.D. stainless-steel column was used. Nitrogen was the carrier gas at a flow-rate of 60 cm³/min. The column packing consisted of 3% SP-2250 on Supelcoport (80–100 mesh) (Supelco, Bellefonte, PA, U.S.A.). The column temperature was increased from 100 to 310°C at 12 °C/min. The temperatures of the injector and detector were 260 and 350°C, respectively.

Esterification

A 1-2 cm³ volume of the 1 *M* hydrochloric acid stock solution of the amino acids (each 1.5-5 mg/cm³) was pipetted into a 25-cm³ vessel (the ground joint of which can be fitted to a vacuum distillation device and to a reflux condenser, respectively) and evaporated to dryness under vacuum. To the residue, 1 cm³ of *n*- or

NOTES

isobutanol was added containing 1 M of thionyl chloride. The reflux condenser was then fitted and the apparatus placed in a water-bath. Esterification took place at 100°C for 60 min. After cooling to room temperature, the solution was evaporated under vacuum, in a water-bath at 60°C, to a syrupy substance. The residue was quantitatively transferred with 5×0.1 cm³ dichloromethane into a 2-cm³ Pierce Reacti-Vial. A 0.5-cm³ volume of trifluoroacetic anhydride was added and the acylation was carried out for 10 min at 150°C. A stock solution of 1 cm³ was prepared, $5-10 \ \mu$ l aliquots of which were injected into the gas chromatograph.

RESULTS AND DISCUSSION

Our model esterifications performed with the thionyl chloride-butanol mixtures and characteristic representatives of amino acids provided the following results.

(1) As to the optimum esterification time, with 1 mol thionyl chloride containing n- or isobutanol, respectively, to be on the safe side, we used 60 min (Tables I and II). n-Butyl esterifications were complete within 10 min, isobutyl esterification within 30 min, with the following exceptions: n-butyl esterification of valine, leucine and tryptophan and isobutyl esterification of histidine became quantitative after 40 min. Note: the prolonged reaction time necessary for the quantitative derivatization of valine, leucine, tryptophan and histidine is independent of the quality of the esterification agent applied.

(2) In order to select the most advantageous derivatization conditions, *i.e.*, the optimum molar ratios of thionyl chloride to butanols (Table I), the concentration of thionyl chloride was varied between 0.5 and 4.0 M (using *n*-butanol) and 0.5 and 1.5 M (in the case of isobutanol), respectively.

The *n*-butyl esterifications are quantitative in the concentration range of $0.75-4.0 \ M$. Nevertheless, the concentration of thionyl chloride recommended is in the range of $0.75-1.5 \ M$, since (i) when using a thionyl chloride concentration higher than 1.5 *M* the methionine was eluted in two peaks, and (ii) the stock solution of the derivatized amino acids became yellowish, probably due to side reactions (Table I, A). In the thionyl chloride-isobutanol system, thionyl chloride concentrations of 0.75 and 1.0 *M* can be utilized for analyses, since (i) in the case of $0.5 \ M$ the esterification of valine was not quantitative (Table I, B) and (ii) interfering peaks were detected at $> 2 \ M$.

(3) The most advantageous volumes of the 1 M thionyl chloride containing butanols were also investigated. In both cases, using the thionyl chloride-*n*-butanol or -isobutanol mixtures, 0.5-2.0 cm³ can be applied. We propose the use of 1 cm³.

(4) The reproducibility of the determination of different amounts of amino acids esterified by the suggested method is summarized in Table II.

(5) Comparing the peak area responses and the analytical reproducibilities of the N-trifluoroacetyl, n- or isobutyl esters prepared by the suggested method with those obtained by the classical method¹¹ (Table I), the following conclusions could be drawn. (i) The peak area responses and the analytical reproducibilities, independently of the esterification agent used, are the same. (ii) The advantages of our esterification method are realized in the direct preparation of the reactant and in the fact that 1-2 cm³ of the thionyl chloride-butanol mixture result in quantitative esterification of 10-15 mg of amino acids. In contrast, the classical prescription¹² requires 1.5 cm³ hydrochloric acid-*n*-butanol for 1 mg amino acid.

TABLE I

OF THIONYL CHLORIDE APPLIED (a) AND APPLYING 6% (w/w) HYDROCHLORIC ACID-CONTAINING BUTANOLS (b), ACCORDING TO ESTERIFICATION EFFICIENCY OF AMINO ACIDS USING #BUTANOL (A) OR ISOBUTANOL (B) AS A FUNCTION OF THE CONCENTRATION THE CLASSICAL METHODS^{11,12}

Esterification time: 60 min. Injected amounts: $20-30 \,\mu g$ of each amino acid. All peak areas listed represent the mean of at least three (a) or four (b) measurements.

LJata	in parenuese	S HAVE UNC			means.											
Thior	j/u I	Peak a	rea obtain	ed, equiva	lent to 1 µ	is of subsi	ance									
cmor (M)		əninolÅ	eliscine	sulin ^V	ətqənəT	əniəleyƏ	prioline Hydroxy-	Proline	эціноілія М	Aspartic acid	əujunn -júuəyJ	acid Glutamic	missy	minig1A	upydoidsiL	ənibi1ziH
(a)	0.5 A 0.75	(181) 331 332	(124) 205 218	(168) 362 364	(130) 306 381		(296) 496 508	(193) 359 360	(105) 251 250	(183) 436 426	304 304 304	(186) 305 355	(137) 246 256	(78) 124 115	237 237 202	(132) 212
	1.5 2.0 2.0	364 196	216 216	375 404	312 312		514 514	377 175	255 255	439	9 9 7 3 9 7	325 325	256 246	118 811	220 220	212 212
	4.0 Meen	326 326	214	376 275	312 312		201 201	£ % 5	251* 251*	454 434	312	333 333	265 265 265	011 611	219 219	247 247
	S.D. (%)	15.3 4.5	8.8 8.8	16.4 4.4	13.1 4.3		15.0 3.0	13.8 3.8	10.9 4.4	14.6 3.4	13.9 13.9 4.4	14.9 4.3	10.2 4.0	3.3 2.8	11.2 5.1	19.8 8.8
(q)	Mean S.D. S.D. (%)	338 8.5 2.5	200 13.2 6.6	383 22.8 5.9	304 11.2 3.7	304 26.7 8.9	301 16.1 3.3	483 14.9 3.9	384 10.5 4.5	235 20.6 4.5	453 5.3 1.5	352 14.7 4.0	361 14.2 5.1	277 3.2 2.8	114 8.3 3.4	240
(a)	0.5 B 0.75 L 1.0 1.5 Mean S.D. (%)	377 382 379 386 381 3.9 3.9 1.0	316 308 315 315 313 4.3 1.3	(363) 398 396 421 13.8 3.4	417 442 418 419 12.0 2.8	203 203 195 195 200 2.3	390 392 388 388 4.3 1.1	609 619 636 620 11.2 1.8	214 205 226 224 217 9.7 4.4	604 623 617 611 10.8 1.8	646 664 643 643 12.9 2.0	605 597 607 603 5.3 0.9	265 270 274 268 3.8 3.8 1.4	130 135 131 131 130 4.1 3.2		191 199 191 192 193 3.4
(q)	Mean S.D. S.D. (%)	378 11.5 3.0	301 14.4 4.8	421 8.2 1.9	409 8.3 2.0	200 3.2 1.6	999 7.8 1.9	640 16.8 2.6		610 5.5 0.9	640 16.4 2.6	589 18.9 3.2	250 5.7 2.2	130 2.0 1.5	169 8.3 4.9	

* Realized in two peaks.

TABLE II

REPRODUCIBILITY OF THE DETERMINATION OF DIFFERENT AMOUNTS OF AMINO ACIDS AS THEIR N-TRIFLUOROACETYL *n*-BUTYL (A) AND ISOBUTYL (B) ESTERS

Esters were prepared with 1 cm³ of butanol containing 1 M thionyl chloride; esterification time 60 min. All peak areas listed represent the mean of at least three measurements.

Amino acid	A					B				
	Injected amount (µg)	Peak area per 1 μg	Mean	R.S.D.	R.S.D . (%)	Peak area per 1 μg	Mean	R.S.D.	R .S.D. (%)	
Alanine	44 .52 22.26 11.13	361 361 354	359	4.1	1.1	393 399 376	389	11.9	3.0	
Glycine	44.48 22.24 11.12	184 198 201	1 94	8.1	4.7	301 300 297	299	2.1	0.7	
Valine	45.12 22.56 11.28	400 408 389	399	9.5	2.4	422 420 415	419	3.6	0.9	
Leucine	41.60 20.80 10.40	304 311 314	310	5.1	1.7	419 417 423	420	3.1	0.7	
Cysteine	40.28 20.14 10.07	313 304 310	309	4.6	1.5	180 194 195	190	8.4	4.4	
Hydroxy- proline	40.00 20.00 10.00	458 486 471	472	14.0	3.0	388 389 396	391	4,4	1.1	
Proline	67.24 33.62 16.81	379 388 369	379	9.5	2.5	647 639 632	639	7.5	1.2	
Methionine	29.56 14.78 7.39	229 236 256	2 40	14.0	5.8	253 245 251	250	4.2	1.7	
Aspartic acid	74.64 37.32 18.66	386 385 388	386	1.6	0.4	600 615 616	610	9.0	1.5	
Phenyl- alaine	74.44 37.22 18.61	356 335 366	352	15.8	4.5	616 645 628	630	13.7	2.2	
Tyrosine	36.20 18.10 9.05	376 373 380	376	3.5	0.9					
Glutamic acid	110.32 55.16 27.58	375 354 364	364	10.5	2.9	583 595 595	591	6.9	1.2	

(Continued on p. 438)

Amino	A					В				
acia	Injected amount (µg)	Peak area per 1 µg	Mean	R.S.D.	R .S.D. (%)	Peak area per 1 µg	Mean	R.S.D.	R.S.D . (%)	
Lysine	59.80 29.90 14.95	241 234 222	232	9.6	4.1	236 244 240	240	4.0	1.7	
Arginine	51.64 25.82 12.91	118 111 120	116	4.7	4.0	118 110 120	116	5.3	4.5	
Tryptophan	44.04 22.02 11.01	221 234 220	225	7.8	3.5	201 210 211	207	5.5	2.6	
Histidine	36.20 30.72 15.36	200 200 220	207	11.5	5.5	177 180 155	171	13.6	7.9	

TABLE II (continued)

This work in addition to our earlier studies forms part of our comprehensive research concerning the development of new and fast analytical methods¹³⁻¹⁸ to determine the main constituents of natural matrices by gas chromatography.

REFERENCES

- 1 S. Makisumi and H. A. Saroff, J. Gas Chromatogr., 3 (1965) 21-27.
- 2 P. B. Hagen and W. Black, Can. J. Biochem., 43 (1965) 949-952.
- 3 J. F. Cavins and M. Friedman, Biochemistry, 6 (1967) 3766-3770.
- 4 R. G. Ackman, S. N. Hooper, M. Kates, A. K. Sen Gupta, G. Eglinton and I. Maclean, J. Chromatogr., 44 (1969) 256-261.
- 5 E. Jellum, V. A. Close, W. Patton, W. Pereira and B. Halpern, Anal. Biochem., 31 (1969) 227-234.
- 6 M. Gee, Anal. Chem., 39 (1967) 1677-1679.
- 7 C. A. Atkins and D. T. Canvin, Can. J. Biochem., 49 (1971) 949-952.
- 8 R. M. Caprioli, W. E. Seifert, Jr. and D. E. Sutherland, Biochem. Biophys. Res. commun., 55 (1973) 67-72.
- 9 H. Falter, K. Jayasimhulu and R. A. Day, Anal. Biochem., 67 (1975) 359-371.
- 10 S. P. Campana Filho and G. Goissis, J. Chromatogr., 236 (1982) 197-200.
- 11 K. Blau and G. S. King (Editors), Handbook of Derivatives for Chromatography, Heyden & Son, London, 1978, Ch. 2, pp. 39-90.
- 12 D. Roach and C. W. Gehrke, J. Chromatogr., 44 (1969) 269-278.
- 13 I. Molnár-Perl, M. Pintér-Szakács, Á. Kövágó and J. Petróczy, J. Chromatogr., 295 (1984) 433-443.
- 14 I. Molnár-Perl, M. Pintér-Szakács, Á. Kövágó and J. Petróczy, Carbohydr. Res., 138 (1985) 83-89.
- 15 I. Molnár-Perl, M. Pintér-Szakács, Á. Kövágó and J. Petróczy, Food Chem., 16 (1985) 163-174.
- 16 I. Mołnár-Perl, M. Pintér-Szakács, Á. Kövágó, J. Petróczy, U. P. Kralovánszky and J. Jakab, Food Chem., 20 (1986) 21-38.
- 17 I. Molnár-Perl, M. Pintér-Szakács, R. Wittmann, M. Reutter and K. Eichner, J. Chromatogr., 361 (1986) 311-320.
- 18 I. Molnár-Perl and M. Pintér-Szakács, Z. Lebensm.-Unters.-Forsch., 183 (1986) 18-25.